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Abstract
Network monitoring systems that support data archival and
after-the-fact (retrospective) queries are useful for a multitude
of purposes, such as anomaly detection and network and se-
curity forensics. Data archival for such systems, however, is
complicated by (a) data arrival rate, which may be hundreds of
thousands of packets per second per link, and (b) the need for
online indexing of this data to support retrospective queries. At
these data rates, both common database index structures and
general-purpose file systems perform poorly.

This paper describes Hyperion, a system for archival, index-
ing, and on-line retrieval of high-volume data streams. We em-
ploy a write-optimized stream file system for high-speed stor-
age of simultaneous data streams, and a novel use of signature
file indexes in a distributed multi-level index.

We implement Hyperion on commodity hardware and con-
duct a detailed evaluation using synthetic data and real net-
work traces. Our streaming file system, StreamFS, is shown to
be fast enough to archive traces at over a million packets per
second. The entire system is able to archive over 200,000 pack-
ets/sec while allowing simultaneous on-line queries—queries
over hours of data are shown to complete in as little as 10-20
seconds.

1 Introduction

1.1 Motivation
Network monitoring by collecting and examining packet
headers has become popular for a multitude of manage-
ment and forensic purposes, from tracking the perpetra-
tors of system attacks to locating errors or performance
problems. Networking monitoring systems come in two
flavors. In live monitoring, packets are captured and ex-
amined in real-time by the monitoring system. Such sys-
tems can run continual queries on the packet stream to
detect specific conditions [20], compute and continually
update traffic statistics, and proactively detect security at-
tacks by looking for worm or denial of service signatures
[8]. Regardless of the particular use, in live monitoring

systems, captured packet headers and payloads are dis-
carded once examined.

However, there are many scenarios where it is useful to
retain packet headers for a limited period of time. Net-
work forensics is one such example—the ability to “go
back” and retroactively examine network packet headers
is immensely useful for network troubleshooting (e.g.,
root-cause analysis), to determine how an intruder broke
into a computer system, or to determine how a worm en-
tered a particular administrative domain. Such network
monitoring systems require data archival capabilities, in
addition to the ability to query and examine live data.
In addition to capturing data at wire speeds, these sys-
tems also need to archive and index them at the same
rates. Further, they need to efficiently support retrieval
and processing of archived data to answer retrospective
queries.

Currently, there are two possible choices for architect-
ing an archival system for data streams. A relational
database may be used to archive data, or a custom index
may be created on top of a conventional file system.

The structure of captured information—a header for
each packet consisting of a set of fields—naturally lends
itself to a database view. This correspondence has led to
systems such as GigaScope [5] and MIND [18], which
implement a SQL interface for querying network moni-
toring data.

A monitoring system must receive new data at high
rates: a single gigabit link can generate over 100,000
packets/s and tens of Mbyte/s of archival data, and a
monitor may record from multiple links. These rates
have prevented the use of traditional database systems.
MIND, which is based on a peer-to-peer index, extracts
and stores only flow-level information, rather than raw
packet headers. GigaScope is a stream database, and like
other stream databases to date [20, 27, 1] supports con-
tinual queries on live streaming data; data archival is not
a first-class design concern in these systems. GigaScope,
for instance, can process continual queries on data from
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some of the highest-speed links in the Internet, but stores
filtered query results in a conventional data warehouse.

An alternative is to employ a general-purpose file sys-
tem to store captured packet headers, typically as log
files, and to construct a special-purpose index on these
files to support efficient querying. A general-purpose file
system, however, is not designed to exploit the partic-
ular characteristics of network monitoring applications,
resulting in lower system throughput than may be fea-
sible. Unix-like file systems, for instance, are typi-
cally optimized for writing small files and reading large
ones sequentially, while network monitoring and query-
ing writes very large files at high data rates, while issu-
ing small random reads. Due to the high data volume in
these applications, and the need to bound worst-case per-
formance in order to avoid data loss, it may be desirable
to optimize the system for these access patterns instead
of relying on a general-purpose file system.

Thus, the unique demands placed by high-volume
stream archival indicate that neither existing databases
nor file systems are directly suited to handle their stor-
age needs. This motivates the need for a new storage
system that runs on commodity hardware and is specifi-
cally designed to handle the needs of high-volume stream
archival in the areas of disk performance, indexing, data
aging, and query and index distribution.

1.2 Research Contributions
In this paper, we present Hyperion1, a novel stream
archival system that is designed for the archival and in-
dexing of high-volume packet header streams. Hyper-
ion consists of three components: (i) StreamFS, a stream
file system that is optimized for sequential immutable
streaming writes, (ii) a multi-level index based on signa-
ture files, used in the past by text search engines, for high
update rates, and (iii) a distributed index layer that dis-
tributes coarse-grain summaries of locally archived data
to other nodes to enable distributed querying.

We have implemented Hyperion on commodity Linux
servers and have used our prototype to conduct a de-
tailed experimental evaluation using real network traces.
Our experiments show that StreamFS is able to guaran-
tee substantially better streaming write performance than
general-purpose Linux file systems, and while simulta-
neously processing read requests is still able to handle
streaming writes at a rate corresponding to over a mil-
lion packets per second. Our multi-level index, in turn,
scales to data rates of over 200K packets/sec while at the
same time providing interactive query responses, search-
ing an hour of trace data in seconds. Finally, we exam-
ine the overhead of scaling a Hyperion system to tens of
monitors, and demonstrate the benefits of our distributed

1The Titan god of observation.

archival system using a real-world example.
The rest of this paper is structured as follows. Section

2 and 3 present design challenges and guiding design
principles. Sections 4-6 present the design and imple-
mentation of Hyperion. We present experimental results
in Sec 7, related work in 8, and our conclusions in 9.

2 Design Challenges
The design of a high-volume archival and indexing sys-
tem for data streams must address several challenges:

Archive multiple, high-volume streams. A single heav-
ily loaded gigabit link may easily produce monitor data
at a rate of 20Mbyte/sec2; a single system may need to
monitor several such links, and thus scale far beyond this
rate. Merely storing this data as it arrives may be a prob-
lem, as a commodity hardware-based system of this scale
must necessarily be based on disk storage; although the
peak speed of such a system is sufficient, the worst-case
speed is far lower than is required. In order to achieve
the needed speeds, it is necessary to exploit the charac-
teristics of modern disks and disk arrays as well as the
sequential append-only nature of archival writes.

Maintain indices on archived data — The cost of ex-
haustive searches through archived data would be pro-
hibitive, so an index is required to support most queries.
This index must be updated at wireline speed, as pack-
ets are captured and archived, and thus must support es-
pecially efficient updating. This high update rate (e.g.
220K pkts/sec in the example above) rules out many in-
dex structures; e.g. a B-tree index over the entire stream
would require one or more disk operations per insertion.
Unlike storage performance requirements, which must
be met to avoid data loss, retrieval performance is not
as critical. However, it must be efficient enough to be
useful; we arbitrarily set a target of 10 seconds per hour
of data searched as a requirement for interactive use.

Reclaim and re-use storage. Storage space is limited
in comparison to arriving data, which is effectively in-
finite if the system runs long enough. This calls for a
mechanism for reclaiming and reusing storage. Data ag-
ing policies that delete the oldest or the least-valuable
data to free up space for new data are needed; in addi-
tion, data must be removed from the index as it is aged
out.

Coordinate between monitors. A typical monitoring
system will comprise multiple monitoring nodes, each
monitoring one or more network links. In network foren-
sics, for instance, it is sometime necessary to query data
archived at multiple nodes to trace events (e.g. a worm)
as they move through a network. Such distributed query-
ing requires some form of coordination between moni-
toring nodes, which involves a trade-off between distri-

2800Mbit/sec traffic, 450 byte packets, 90 bytes captured per packet
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Figure 1: Components of the Hyperion network monitoring system.

bution of data and queries. If too much data or index in-
formation is distributed across monitoring nodes, it may
limit the overall scale of the system as the number of
nodes increase; if queries must be flooded to all moni-
tors, query performance will not scale.

Run on commodity hardware. The use of commod-
ity processors and storage imposes limits on the process-
ing and storage bandwidths available at each monitoring
node, and the system must optimize its resource usage to
scale to high data volumes.

3 Hyperion Design Principles
The challenges outlined in the previous section result in
three guiding principles for our system design.

P1: Support queries, not reads: A general-purpose
file system supports low-level operations such as reads
and writes. However, the specific nature of monitoring
applications dictates that data is typically accessed in the
form of queries. Consequently, a stream archival system
should support data accesses at the level of queries, as
opposed to raw reads on unstructured data. Efficient sup-
port for querying implies the need to maintain an index
and one that is particularly suited for high update rates.

P2: Exploit sequential, immutable writes: Stream
archival results in continuous sequential writes to the un-
derlying storage system; writes are typically immutable
since data is not modified once archived. The system
should employ data placement techniques that exploit
these I/O characteristics to reduce disk seek overheads
and improve system throughput.

P3: Archive locally, summarize globally. There is an
inherent conflict between the need to scale, which favors
local archiving and indexing to avoid network writes, and
the need to avoid flooding to answer distributed queries,
which favors sharing information across nodes. This
principle “resolves” this conflict by advocating a de-
sign where data archival and indexing is performed lo-
cally and a coarse-grain summary of the index is shared
between nodes to support distributed querying without
flooding.

Based on these principles, we have designed Hyper-
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Figure 2: Write arrivals and disk accesses for single file per stream.
Writes for streams A, B, and C are interleaved, causing most operations
to be non-sequential.
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Figure 3: Logfile rotation. Data arrives for streams A, B, and C in an
interleaved fashion, but is written to disk in a mostly sequential order.

ion, a stream archival system that consists of three key
components: (i) a stream file system that is highly opti-
mized for high volume archival and retrospective query-
ing, (ii) a multi-level index structure that is designed
for high update rates while retaining reasonable lookup
performance, and (iii) a distributed index layer that dis-
tributes a coarse-grain summary of the local indices to
enable distributed queries (see Figure 1) The following
sections present the rationale for and design of these
components in detail.

4 Hyperion Stream File System
The design of the storage system for Hyperion is driven
by its requirements: storage of multiple high-speed traf-
fic streams without loss, re-use of storage in a circular
buffer-like fashion, and support for concurrent read ac-
tivity without loss of write performance. The main bar-
rier to meeting these requirements is the variability in
performance of commodity disk and array storage; al-
though storage systems with best-case throughput suffi-
cient for this task are easily built, worst-case throughput
is many orders of magnitude worse.

In this section we first consider implementing this stor-
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age system on top of a general-purpose file system. After
exploring the performance implications of the unconven-
tional access profile presented by stream writes for sev-
eral different file systems, we then describe StreamFS,
an application-specific file system for stream storage.3

In order to consider these issues, we first define a
stream storage system in more detail. Unlike a general
purpose file system which stores files, a stream storage
system stores streams. These streams are:

• Recycled: when the storage system is full, writes of
new data succeed, and old data is lost (i.e. removed
or overwritten in a circular buffer fashion). This is in
contrast to a general-purpose file system, where new
data is lost and old data is retained.

• Immutable: an application may append data to a
stream, but does not modify previously written data.

In addition, streams may be:

• Record-oriented: data is written in fixed or variable-
sized records; record boundaries are preserved when
reading data back.

4.1 Why not a general purpose filesystem?
To store streams on a general purpose file system, a map-
ping between streams and files is needed. A number of
such mappings exist; we examine several of them below.
In this consideration we ignore the use of buffering and
RAID, which may be used to improve the performance of
each of these methods but will not change their relative
efficiency.

File-per-stream: A naı̈ve stream storage implementa-
tion may be done by creating a single large file for each
data stream. When storage is filled, the beginning of the
file cannot be deleted if the most recent data (at the end
of the file) is to be retained, so the beginning of the file is
over-written with new data in circular buffer fashion. A
simplified view of this implementation and the resulting
access patterns may be seen in Figure 2. Performance
of this method is poor, as with multiple simultaneous
streams the disk head must seek back and forth between
the write position on each file.

Log files: A better approach to storing streams is
known as logfile rotation, where a new file is written un-
til it reaches some maximum size, and then closed; the
oldest files are then deleted to make room for new ones.
Simplified operation may be seen in Figure 3, where files
are allocated as single extents across the disk. This orga-
nization is much better at allocating storage flexibly, as

3It should be noted that specialized file systems for application
classes (e.g. streaming media) have a poor history of acceptance. How-
ever, file systems specific to a single application, often implemented in
user space, have been used with success in a number of areas such as
web proxies and servers [25, 16] and commercial databases such as
Oracle. [21]
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Figure 4: Log allocation - StreamFS, LFS. Data arrives in an inter-
leaved fashion and is written to disk in that same order.

allocation decisions may be revised dynamically when
choosing which file to delete. As shown in the figure,
fairly good locality will be maintained when first filling
the volume; with continued use, however, consecutively
created files and extents may be located far apart on disk,
degrading throughput to that of the previous method.

Log-Structured File System: The highest write
throughput will be obtained if storage is allocated se-
quentially as data arrives, as illustrated in Figure 4. This
is the method used by Log-structured File Systems (LFS)
such as [22], and when logfile rotation is used on such a
file system, interleaved writes to multiple streams will be
allocated closely together on disk.

Although write allocation in log-structured file sys-
tems is straightforward, cleaning, or the garbage collect-
ing of storage space after files are deleted, has however
remained problematic [24, 31]. Cleaning in a general-
purpose LFS must handle files of vastly different sizes
and lifetimes, and all existing solutions involve copying
data to avoid fragmentation. The FIFO-like Hyperion
write sequence is a very poor fit for such general clean-
ing algorithms; in Section 7 our results indicate that it
results in significant cleaning overhead.

4.2 StreamFS Storage Organization
The Hyperion stream file system, StreamFS, adopts the
log structured write allocation of LFS; as seen in Fig-
ure 4, all writes take place at the write frontier, which
advances as data is written. However, StreamFS does not
require a segment cleaner, and never copies data in nor-
mal operation. This eliminates the primary drawback of
log-structured file systems and is made possible by tak-
ing advantage of both the StreamFS storage reservation
system and the properties of stream data.

The trivial way to do this would be to over-write all
segments as the write frontier advances, implicitly es-
tablishing a single age-based expiration policy for all
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streams. This policy ignores differences between streams
in both rate and length of time which they must retain
data. Instead, StreamFS provides a storage guarantee
to each stream; no records from a stream will be re-
claimed or over-written while the stream size (i.e. re-
tained records) is less than this guarantee. Conversely, if
the size of a stream is larger than its guarantee, then only
that amount of recent data is protected, and any older
records are considered surplus.

The sum of guarantees is constrained to be less than
the size of the storage system minus a fraction; we term
the ratio of guarantees to volume size the volume uti-
lization.4 As with other file systems the utilization has a
strong effect on performance.

StreamFS avoids a segment cleaner by using a small
segment size (1 or 1

2MB); each segment stores records
from a single stream. As the write frontier advances, it
is only necessary to determine whether the next segment
is surplus. If so, it is simply overwritten, as seen in Fig-
ure 4, and if not it is skipped and will expire later; no
data copying or cleaning is needed in either case. This
provides a flexible storage allocation mechanism, allow-
ing storage reservation as well as best-effort use of re-
maining storage. Simulation results have shown[7] this
“cleaning” strategy to perform very well, with no virtu-
ally no throughput degradation for utilizations of 70% or
less, and no more than a 15% loss in throughput at 90%
utilization.

4.3 Handles and Reads
The read behavior generated by Hyperion queries is
very different from the sequential, interleaved writes de-
scribed above. When processing a query, as described
in Section 5, a value must be retrieved from the index
stream which allows a record to be located and fetched
from the data stream. A byte offset may be used for this
purpose in a general-purpose file system, but is difficult
to define in a useful and efficient fashion for a stream.
Instead StreamFS provides a persistent handle which is
returned from each write operation; this handle may then

4This definition varies slightly from that used for general-purpose
file systems, as much of the “free” space beyond the volume utilization
may hold accessible data.
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Figure 6: StreamFS metadata structures: record header for each record
written by the application, block header for each fixed-length block,
block map for every N (256) blocks, and one file system root.

be passed to the read operation to retrieve the corre-
sponding record.

In addition we wish to efficiently handle the access
patterns generated by indexed queries in Hyperion, as
well. This pattern consists of sequential reads of one
stream, the top-level index, interrupted by accesses to
only selected sections of both the level 2 index and the
data itself. We accommodate this non-contiguous access
pattern by providing an optimized random read opera-
tion, which is able to complete all small reads in a single
disk operation.

This is accomplished by encoding information needed
for the read operation — in particular, disk location and
approximate length – in the persistent handle. As shown
in Figure 5, at read time this allows the record to be re-
trieved directly, without requiring access to any levels of
file system metadata.

Using application-provided information directly to ac-
cess the disk carries significant robustness and secu-
rity risks, however. We address these by using a self-
certifying record header, which guarantees that a handle
is valid and that access is permitted. This header con-
tains the ID of the stream to which it belongs and the
permissions of that stream, the record length, and a hash
to detect invalid or forged handles. The hash is of the
header fields and a file system secret, which is not acces-
sible to unprivileged processes. To retrieve a record by
its persistent handle, StreamFS decodes the handle, reads
from the indicated address and length, and then verifies
the record header hash. At this point a valid reader has
been found; permission fields may then be checked and
the record returned to the application if appropriate.
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4.4 StreamFS Organization
The record header used for self-certifying reads is one of
the StreamFS on-disk data structures illustrated in Fig-
ure 6. These structures and their fields and functions are
as follows:

• record: Each variable-length record written by the ap-
plication corresponds to an on-disk record and record
header. The header contains validation fields de-
scribed above, as well as timestamp and length fields.

• block: Multiple records from the same stream are
combined in a single fixed-length block, by default
1Mbyte in length. The block header identifies the
stream to which the block belongs, and record bound-
aries within the block.

• block map: Every N th block (default 256) is used as
a block map, indicating the associated stream and an
in-stream sequence number for each of the preceding
N − 1 blocks. This map is used for write allocation,
when it must be determined whether a block is part of
a stream’s guaranteed allocation and must be skipped,
or whether it may be overwritten.

• file system root: The root holds the stream directory,
metadata for each stream (head and tail pointers, size,
parameters), and a description of the devices making
up the file system.

4.5 Striping and Balancing
Striping: StreamFS supports multiple devices directly;
data is distributed across the devices in units of a sin-
gle block, much as data is striped across a RAID-0 vol-
ume. The benefits of single disk write-optimizations in
StreamFS extend to multi-disk systems as well. Since
successive blocks (e.g., block i and i + 1) map onto suc-
cessive disks in a striped system, StreamFS can extract
the benefits of I/O parallelism and increase overall sys-
tem throughput. Further, in a d disk system, blocks i and
i+d will map to the same disk drive due to wrap-around.
Consequently, under heavy load when there are more
than d outstanding write requests, writes to the same disk
will be written out sequentially, yielding similar benefits
of sequential writes as in a single-disk system.

Speed balancing: Modern disk drives are zoned in or-
der to maintain constant linear bit density; this results in
disk throughput which can differ by a factor of 2 between
the innermost and the outermost zones. If StreamFS
were to write out data blocks sequentially from the outer
to inner zones, then the system throughput would drop
by a factor of two when the write frontier reached the
inner zones. This worst-case throughput, rather than the
mean throughput, would then determine the maximum
loss-less data capture rate of the monitoring system.

StreamFS employs a balancing mechanism to ensure
that system throughput remains roughly constant over

time, despite variations across the disk platter. This is
done by appropriately spreading the write traffic across
the disk and results in an increase of approximately
30% in worst-case throughput. The disk is divided into
three5zones R, S and T , and each zone into large, fixed-
sized regions (R1, . . . , Rn), (S1, . . . , Sn), (T1, . . . , Tn).
These regions are then used in the following order:
(R1, S1, Tn, R2, S2, Tn−1, . . . , Rn, Sn, T1); data is writ-
ten sequentially to blocks within each region. The ef-
fective throughput is thus the average of throughput at 3
different points on the disk, and close to constant.

When accessing the disk sequentially, a zone-to-zone
seek will be required after each region; the region size
must thus be chosen to balance seek overhead with
buffering requirements. For the disks used in our exper-
iments, a region size of about 64MB results in one ad-
ditional seek per second (degrading disk performance by
less than 1%) at a buffering requirement of about 16MB
per device.

5 Indexing Archival Data
An Hyperion monitor needs to maintain an index which
supports efficient retrospective queries, but also which
may be created at high speed. Disk performance sig-
nificantly limits the options available for the index; al-
though minimizing random disk operations is a goal in
any database, here multiple fields must be indexed in
records arriving at a rate of over 100,000 per second per
link. To scale to these rates, Hyperion relies on index
structures that can be computed online and then stored
immutably. Hyperion partitions a stream into segments
and computes one or more signatures [12] for each seg-
ment. The signatures can be tested for the presence of
a record with a certain key in the associated data seg-
ment. Unlike a traditional B-tree-like structure, a signa-
ture only indicates whether a record matching a certain
key is present; it does not indicate where in the segment
that record is present. Thus, the entire segment needs to
be retrieved and scanned for the result. However, if the
key is not present, the entire segment can be skipped.

Signature indices are computed on a per-segment ba-
sis; no stream-wide index is maintained. This organi-
zation provides an index which may be streamed to disk
along with the data—once all data within a segment have
been examined (and streamed to storage), the signature
itself can also be streamed out and a new signature com-
putation begun for the next data segment. This also
solves the problem of removing records from the index
as they age out, as the signature associated with a data
segment ages out as well.

5The original choice of 3 regions was made rather arbitrarily, but
later work [7] demonstrates that this organization results in throughput
variations of less than 4% across a very wide range of disk geometries.
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5.1 Multi-level Signature Indices
Hyperion uses a multi-level signature index, the organi-
zation of which is shown in detail in Figure 7. A signa-
ture index, the most well-known of which is the Bloom
Filter [2], creates a compact signature for one or more
records, which may be tested to determine whether a par-
ticular key is present in the associated records. (This is in
contrast to e.g. a B-tree or conventional hash table, where
the structure provides a map from a key to the location
where the corresponding record is stored.) To search for
records containing a particular key, we first retrieve and
test only the signatures; if any signature matches, then
the corresponding records are retrieved and searched.

Signature functions are typically inexact, with some
probability of a false positive, where the signature test
indicates a match when there is none. This will be cor-
rected when scanning the actual data records; the signa-
ture function cannot generate false negatives, however,
as this will result in records being missed. Search effi-
ciency for these structures is a trade-off between signa-
ture compactness, which reduces the amount of data re-
trieved when scanning the index, and false positive rate,
which results in unnecessary data records being retrieved
and then discarded.

The Hyperion index uses Bloom’s hash function,
where each key is hashed into a b-bit word, of which k
bits are set to 1. The hash words for all keys in a set are
logically OR-ed together, and the result is written as the
signature for that set of records. To check for the pres-
ence of a particular key, the hash for that key h0 is cal-
culated and compared with the signature for the record,
hs; if any bit is set in h0 but not set in hs, then the value
cannot be present in the corresponding data record. To
calculate the false positive probability, we note that if the
fraction of 1 bits in the signature for a set of records is
r and the number of 1 bits in any individual hash is k,
then the chance that a match could occur by chance is
1 − (1 − r)k; e.g. if the fraction of 1 bits is 1

2 , then the
probability is 2−k.

Multi-level index: Hyperion employs a two-level in-
dex [23], where a level-1 signature is computed for each
data segment, and then a level-2 signature is computed

over k data segments. A search scans the level-2 signa-
tures, and when a match is detected the corresponding
k level-1 signatures are retrieved and tested; data blocks
are retrieved and scanned only when a match is found in
a level-1 signature.

When no match is found in the level-2 signature,
k data segments may be skipped; this allows efficient
search over large volumes of data. The level-2 signa-
ture will suffer from a higher false positive rate, as it is k
times more concise than the level-1 signature; however,
when a false positive occurs it is almost always detected
after the retrieval of the level-1 signatures. In effect, the
multi-level structure allows the compactness of the level-
2 signature to be paired with the accuracy of the level-1
signature.

Bit-sliced index: The description thus far assumes
that signatures are streamed to disk as they are produced.
When reading the index, however, an entire signature—
thousands of bytes—must be retrieved from disk in order
to examine perhaps only a few dozen bits or less.

By buffering the top-level index and writing it in bit-
sliced [11] fashion we are able to retrieve only those
bits which need to be tested, thus possibly reducing the
amount of data retrieved by orders of magnitude. This is
done by aggregating N signatures, and then writing them
out in N -bit slices, where the ith slice is constructed by
concatenating bit i from each of the N signatures. If N is
large enough, then each slice may be retrieved in a single
disk access, and the bits which are not tested will remain
untouched on disk.

5.2 Handling Range and Rank Queries
Although signature indices are very efficient, like other
hash indices they are useful for exact-match queries only.
In particular, they do not efficiently handle certain query
types, such as range and rank (top-K) queries, which are
useful in network monitoring applications.

Hyperion can use certain other functions as indices, as
well. Two of these are interval bitmaps [26] and aggre-
gation functions.

Interval bitmaps are a form of what are known as
bitmap indices [3]; the domain of a variable is divided
into b intervals, and a b-bit signature is generated by set-
ting the one bit corresponding to the interval containing
the variable’s value. These signatures may then be su-
perimposed, giving a summary which indicates whether
a value within a particular range is present in the set of
summarized records.

Aggregate functions such as min and max may be
used as indexes as well; in this case the aggregate is cal-
culated over a segment of data and stored as the signature
for that data. Thus a query for x < X0 can use aggre-
gate minima to skip segments of data where no value will
match, and a query for x with COUNT (x) > N0 can
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make use of an index indicating the top K values [17] in
each segment and their counts.

Of these, min and max have been implemented in the
Hyperion system.

5.3 Distributed index and query
Our discussion thus far has focused on data archival and
indexing locally on each node. A typical network mon-
itoring system will comprise multiple nodes and it is
necessary to handle distributed queries without resorting
to query flooding. Hyperion maintains a distributed in-
dex that provides an integrated view of data at all nodes,
while storing the data itself and most index information
locally on the node where it was generated. Local storage
is emphasized for performance reasons, since local stor-
age bandwidth is more economical than communication
bandwidth; storage of archived data which may never be
accessed is thus most efficiently done locally.

To create this distributed index, a coarse-grain sum-
mary of the data archived at each node is needed. The top
level of the Hyperion multi-level index provides such a
summary, and is shared by each node with the rest of the
system. Since broadcasting the index to all other nodes
would result in excessive traffic as the system scales, an
index node is designated for each time interval [t1, t2).
All nodes send their top-level indices to the index node
during this time-interval. Designating a different index
node for successive time intervals results in a temporally-
distributed index. Cross-node queries are first sent to an
index node, which uses the coarse-grain index to deter-
mine the subset of the nodes containing matching data;
the query is then forwarded to this subset for further pro-
cessing.

6 Implementation
We have implemented a prototype of the Hyperion net-
work monitoring system on Linux, running on commod-
ity servers; it currently comprises 7000 lines of code.

The StreamFS implementation takes advantage of
Linux asynchronous I/O and raw device access, and is
implemented as a user-space library. In an additional
simplification, the file system root resides in a file on
the conventional file system, rather than on the device
itself. These implementation choices impose several
constraints: for instance, all access to a StreamFS vol-
ume must occur from the same process, and that process
must run as root in order to access the storage hardware.
These limitations have not been an issue for Hyperion to
date; however, a kernel implementation of StreamFS is
planned which will address them.

The index is a two-level signature index with linear
scan of the top level (not bit-sliced) as described in Sec-
tion 5.1. Multiple keys may be selected to be indexed

on, where each key may be a single field or a composite
key consisting of multiple fields. Signatures for each key
are then superimposed in the same index stream via log-
ical OR. Query planning is not yet implemented, and the
query API requires that each key to be used in perform-
ing the query be explicitly identified.

Packet input is supported from trace files and via a
special-purpose gigabit ethernet driver, sk98 fast, devel-
oped for nProbe at the University of Cambridge [19].
Support for Endace DAG hardware is planned, as well.

The Hyperion system is implemented as a set of
modules which may be controlled from a scripting lan-
guage (Python) through an interface implemented via the
SWIG wrapper toolkit. This design allows the struc-
ture of the monitoring application to be changed flexi-
bly, even at run time—as an example, a query is pro-
cessed by instantiating data source and index search ob-
jects and connecting them. Communication between Hy-
perion systems is by RPC, which allows remote query
execution or index distribution to be handled and con-
trolled by the same mechanisms as configuration within
a single system.

7 Experimental Results
In this section we present operational measurements of
the Hyperion network monitor system. Tests of the
stream file system component, StreamFS, measure its
performance and compare it to that of solutions based on
general-purpose file systems. Micro-benchmarks as well
as off-line tests on real data are used to test the multi-
level indexing system; the micro-benchmarks measure
the scalability of the algorithm, while the trace-based
tests characterize the search performance of our index
on real data. Finally, system experiments characterize
the performance of single Hyperion nodes, as well as
demonstrating operation of a multi-node configuration.

7.1 Experimental Setup
Unless specified otherwise, tests were performed on the
following system:

Hardware 2 × 2.4GHz P4 Xeon, 1 GB memory
Storage 4 × Fujitsu MAP3367NP

Ultra320 SCSI, 10K RPM
OS Linux 2.6.9 (CentOS 4.4)

Network SysKonnect SK-9821 1000mbps

File system tests wrote dummy data (i.e. zeros), and
ignored data from read operations. Most index tests,
however, used actual trace data from the link between the
University of Massachusetts and the commercial Inter-
net.6 These trace files were replayed on another system

6available for download at http://traces.cs.umass.edu
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Figure 8: Streaming write-only throughput by file system. Each trace
shows throughput for 30s intervals over the test run; corresponding flat
lines indicate mean throughput.

by combining the recorded headers (possibly after modi-
fication) with dummy data, and transmitting the resulting
packets directly to the system under test.

7.2 File Systems and Databases
Our first tests establish a baseline for evaluating the
performance of the Hyperion system. Since Hyperion
is an application-specific database, built on top of an
application-specific file system, we compare its perfor-
mance with that of existing general-purpose versions of
these components. In particular, we measure the perfor-
mance of a conventional relational database for storing
network trace data, and of several general-purpose file
systems for high-speed stream storage.

Database Performance: Postgres 7.4.13 was used as
an example of a general-purpose relational database, and
tested for its suitability to store network monitoring data
in real time. Approximately 14.5M trace data records
(i.e. packet headers) representing 158 seconds of sam-
pled traffic were bulk loaded using the COPY command;
after loading, a query retrieved a unique row in the ta-
ble. No index was created, and no attempt was made to
test simultaneous insert and query performance. 8 repeti-
tions were performed; mean results with 95% confidence
intervals are as follows:

data set 158 seconds 14.5M records
table load 252 s (±7 s) 1.56 × real-time

query 50.7 s (±0.4 s) 0.32 × real-time

Postgres required 56% more time to load the trace than
the interval in which the trace had been collected. The
query completed faster than real time; at this speed it
would require 20 minutes for a single search through an
hour of data. Performance with an indexed table was not
tested; we expect that this would improve lookup perfor-
mance significantly, while further reducing insert speed.
The trace was taken on a moderately loaded (40%) giga-
bit link; although additional hardware and tuning would
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no doubt improve performance, it is clearly far from our
performance targets.

Baseline File system measurements: These tests
measure the performance of general-purpose file systems
to serve as the basis for an application-specific stream
database for Hyperion. In particular, we measure write-
only performance with multiple streams, as well as the
ability to deliver write performance guarantees in the
presence of mixed read and write traffic. The file sys-
tems tested are ext2, ext3, ReiserFS, XFS, and JFS on
Linux, and LFS on NetBSD 3.1.

Preliminary tests using the naı̈ve single file per stream
strategy from Section 4.1 are omitted, as performance
for all file systems was poor. Further tests used an imple-
mentation of the log file strategy from Section 4.1, with
file size capped at 64MB. Tests were performed with 32
parallel streams of differing speeds, with random write
arrivals of mean size 64KB. All results shown are for the
steady state, after the disk has filled and data is being
deleted to make room for new writes.

The clear leader in performance is XFS, as may be
seen in Figure 8. It appears that XFS maintains high
write performance for a large number of streams by
buffering writes and writing large extents to each file –
contiguous extents as large as 100MB were observed,
and (as expected) the buffer cache expanded to use al-
most all of memory during the tests. (Sweeeney et
al. [29] describe how XFS defers assignment of disk
blocks until pages are flushed, allowing such large ex-
tents to be generated.)

LFS has the next best performance. We hypothesize
that a key factor in its somewhat lower performance was
the significant overhead of the segment cleaner. Al-
though we were not able to directly measure I/O rates
due to cleaning, the system CPU usage of the cleaner
process was significant: approximately 25% of that used
by the test program.
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7.3 StreamFS Evaluation
In light of the above results, we evaluate the Hyperion
file system StreamFS by comparing it to XFS.

StreamFS Write Performance: In Figure 9 we see
representative traces for 32-stream write-only traffic for
StreamFS and XFS. Although mean throughput for both
file systems closely approaches the disk limit, XFS
shows high variability even when averaged across 30 sec-
ond intervals. Much of the XFS performance variability
remains within the range of the disk minimum and max-
imum throughput, and is likely due to allocation of large
extents at random positions across the disk. A number
of 30s intervals, however, as well as two 60s intervals,
fall considerably below the minimum disk throughput;
we have not yet determined a cause for these drop-offs in
performance. The consistent performance of StreamFS,
in turn, allows it to guarantee a worst-case speed close
to the mean — almost 50% higher than the worst-case
speed for XFS.

Read/Write Performance: Useful measurements of
combined read/write performance require a model of
read access patterns generated by the Hyperion monitor.
In operation, on-line queries read the top-level index, and
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then, based on that index, read non-contiguous segments
of the corresponding second-level index and data stream.
This results in a read access pattern which is highly non-
contiguous, although most seeks are relatively small. We
model this non-contiguous access stream as random read
requests of 4KB blocks in our measurements, with a
fixed ratio of read to write requests in each experiment.

Figure 10 shows a scatter plot of XFS and StreamFS
performance for varying read/write ratios. XFS read per-
formance is poor, and write performance degrades pre-
cipitously when read traffic is added. This may be a side
effect of organizing data in logfiles, as due to the large
number of individual files, many read requests require
opening a new file handle. It appears that these oper-
ations result in flushing some amount of pending work
to disk; as evidence, the mean write extent length when
reads are mixed with writes is a factor of 10 smaller than
for the write-only case.

StreamFS Read Performance: We note that the pre-
liminary version of StreamFS is not optimized for se-
quential read access; in particular, it does not include a
read-ahead mechanism, causing some sequential opera-
tions to incur the latency of a full disk rotation. This
may mask smaller-scale effects, which could come to
dominate if the most significant overheads were to be re-
moved.

With this caveat, we test single-stream read operation,
to determine the effect of record size and stream inter-
leaving on read performance. Each test writes one or
more streams to an empty file system, so that the streams
are interleaved on disk. We then retrieve the records of
one of these streams in sequential order. Results may be
seen in Figure 11, for record sizes ranging from 2KB to
128KB. Performance is dominated by per-record over-
head, which we hypothesize is due to the lack of read-
ahead mentioned above, and interleaved traffic has little
effect on performance.

Sensitivity testing: These additional tests measured
changes in performance with variations in the number
of streams and of devices. Figure 12 shows the perfor-
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mance of StreamFS and XFS as the number of simul-
taneous streams varies from 1 to 32, for write-only and
mixed read/write operations. XFS performance is seen to
degrade slightly as the number of streams increases, and
more so in the presence of read requests, while StreamFS
throughput is relatively flat.

Multi-device tests with StreamFS on multiple devices
and XFS over software RAID show almost identical
speedup for both. Performance approximately doubles
when going from 1 to 2 devices, and increases by a lesser
amount with 3 devices as we get closer to the capacity of
the 64-bit PCI bus on the test platform.

7.4 Index Evaluation
The Hyperion index must satisfy two competing criteria:
it must be fast to calculate and store, yet provide efficient
query operation. We test both of these criteria, using both
generated and trace data.

Signature Index Computation: The speed of this
computation was measured by repeatedly indexing sam-
pled packet headers in a large (gg cache size) buffer. on
a single CPU. Since the size of the computation input —
i.e. the number of headers indexed – is variable, linear re-
gression was used to determine the relationship between
computation parameters and performance.

In more detail, for each packet header we create N
indices, where each index i is created on Fi fields (e.g.
source address) totaling Bi bytes. For index i, the Bi

bytes are hashed into an M -bit value with k bits set, as
described in Section 5.1. Regression results for the sig-
nificant parameters are:

variable coeff. std. error t-stat
index (N ) 132 ns 6.53 ns 20.2

bytes hashed (Bi) 9.4 ns 1.98 ns 4.72
bit generated (k) 43.5 ns 2.1 ns 21.1

As an example, if 7 indices are computed per header,
with a total of 40 bytes hashed and 60 signature bits gen-
erated, then index computation would take 7 · 132 + 40 ·
9.4 + 60 · 43.5 = 3910ns or 3.9 µs/packet, for a peak
processing rate of 256,000 headers per second on the test
CPU, a 2.4GHz Xeon. Although not sufficient to index
minimum-sized packets on a loaded gigabit link, this is
certainly fast enough for the traffic we have measured to
date. (e.g. 106,000 packets/sec on a link carrying ap-
proximately 400Mbit/sec.)

Signature Density: This next set of results examines
the performance of the Hyperion index after it has been
written to disk, during queries. In Figure 13 we mea-
sure the signature density, or the fraction of bits set to
1, when summarizing addresses from trace data. On the
X axis we see the number of addresses summarized in a
single hash block, while the different traces indicate the
precision with which each address is summarized. From
Bloom [2] we know that the efficiency of this index is
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maximized when the fraction of 1 (or 0) bits is 0.5; this
line is shown for reference.

From the graph we see that a 4KB signature can ef-
ficiently summarize between 3500 and 6000 addresses,
depending on the parameter k and thus the false positive
probability. The top line in the graph shows signature
density when hashing uniformly-distributed random ad-
dresses with k = 10; it reaches 50% density after hash-
ing only half as many addresses as the k = 10 line for
real addresses. This is to be expected, due to repeated ad-
dresses in the real traces, and translates into higher index
performance when operating on real, correlated data.

Query overhead: Since the index and data used by
a query must be read from disk, we measure the over-
head of a query by the factors which affect the speed
of this operation: the volume of data retrieved and the
number of disk seeks incurred. A 2-level index with 4K
byte index blocks was tested, with data block size vary-
ing from 32KB to 96KB according to test parameters.
The test indexed traces of 1 hour of traffic, comprising
26GB, 3.8 · 108 packets, and 2.5 · 106 unique addresses.
To measure overhead of the index itself, rather than re-
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Figure 15: Single query overhead for bit-sliced index. Identical to Fig-
ure 14, except that each index was split into 1024 32-bit slices, with
slices from 1024 indices stored consecutively by slice number.

trieval of result data, queries used were highly selective,
returning only 1 or 2 packets.

Figures 14 and 15 show query overhead for the sim-
ple and bit-sliced indices, respectively. On the right of
each graph, the volume of data retrieved is dominated by
sub-index and data block retrieval due to false hits in the
main index. To the left (visible only in Figure 14) is a do-
main where data retrieval is dominated by the main index
itself. In each case, seek overhead decreases almost lin-
early, as it is dominated by skipping from block to block
in the main index; the number of these blocks decreases
as the packets per block increase. In each case there is a
region which allows the 26GB of data to be scanned at
the cost of 10-15 MB of data retrieved, and 1000-2000
disk seeks.

7.5 Prototype Evaluation
After presenting test results for the components of the
Hyperion network monitor, we now turn to tests of
its performance as a whole. Our implementation uses
StreamFS as described above, and a 2-level index with-
out bit-slicing. The following tests for performance,
functionality, and scalability are presented below:

• performance tests: tests on single monitoring node
which assess the system’s ability to gather and index
data at network speed, while simultaneously process-
ing user queries.

• functionality testing: three monitoring nodes are used
to trace the origin of simulated malicious traffic within
real network data.

• scalability testing: a system of twenty monitoring
nodes is used to gather and index trace data, to mea-
sure the overhead of the index update protocol.

Monitoring and Query Performance: These tests
were performed on the primary test system, but with a
single data disk. Traffic from our gateway link traces
was replayed over a gigabit cable to the test system. First
the database was loaded by monitoring an hour’s worth
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Figure 16: Packet arrival and loss rates.

of sampled data — 4 · 108 packets, or 26GB of packet
header data. After this, packets were transmitted to the
system under test with inter-arrival times from the orig-
inal trace, but scaled so as to vary the mean arrival rate,
while simultaneously submitting queries. We compute
packet loss by comparing the transmit count on the test
system with the receive count on Hyperion, and measure
CPU usage.

Figure 16 shows packet loss and free CPU time re-
maining as the packet arrival rate is varied.7 Although
loss rate is shown on a logarithmic scale, the lowest
points represent zero packets lost out of 30 or 40 million
received. The results show that Hyperion was able to re-
ceive and index over 200,000 packets per second with
negligible packet loss. In addition, the primary resource
limitation appears to be CPU power, indicating that it
may be possible to achieve significantly higher perfor-
mance as CPU speeds scale.

System Scalability: In this test a cluster of 20 mon-
itors recorded trace information from files, rather than
from the network itself. Tcpdump was used to moni-
tor RPC traffic between the Hyperion processes on the
nodes, and packet and byte counts were measured. Each
of the 20 systems monitored a simulated link with traffic
of approximately 110K pkts/sec, with a total bit rate per
link of over 400 Mbit/sec. Level 2 indices were streamed
to a cluster head, a position which rotates over time to
share the load evenly. A third level of index was used
in this test; each cluster head would the indices received,
and then aggregate them with its own level 2 index and
forward the resulting stream to the current network head.
Results are as follows:

Hyperion overhead in units of 103 bytes/sec
leaf cluster head net head

transmit 102 102
receive 408 510

7Idle time is reported as the fraction of 2 CPUs which is available.
One CPU is spinning in a packet capture loop; when this is fixed, the
free CPU time will be higher.
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From these results we see that the overhead of scaling to
dozens of nodes would not be excessive in many envi-
ronments, such as within a campus.

Forensic Query Case Study: This experiment exam-
ines a simulated 2-stage network attack, based on real-
world examples.Packet traces were generated for the at-
tack, and then combined with sampled trace data to cre-
ate traffic traces for the 3 monitors in this simulation,
located at the campus gateway, the path to target A, and
the path to B respectively.

Abbreviated versions of the queries for this search are
as follows:
1 SELECT p WHERE src=B,dport=SMTP,t≤ Tnow

Search outbound spam traffic from B, locating start
time T0.

2 SELECT p WHERE dst=B,t∈ T0 · · ·T0 + ∆

Search traffic into B during single spam transmission
to find control connection.

3 SELECT p WHERE dst=B,t∈ T0 −∆ · · ·T0

Find inbound traffic to B in the period before T0.
4 SELECT p WHERE s/d/p=Z/B/Px, syn, t≤ T0

Search for SYN packet on this connection at time T−1.
5 SELECT p WHERE dst=B,t∈ T−1 −∆ · · ·T−1

Search for the attack which infected B, finding con-
nection from A at T2.

6 SELECT p WHERE dst=A,t∈ T−2 −∆ · · ·T−2 + ∆

Find external traffic to A during the A-B connection to
locate attacker X.

7 SELECT p WHERE src=X,syn,t≤ T−2

Find all incoming connections from X
We note that additional steps beyond the Hyperion
queries themselves are needed to trace the attack; for in-
stance, in step 3 the search results are examined for pat-
terns of known exploits, and the results from steps 5 and
6 must be joined in order to locate X. Performance of this
search (in particular, steps 1, 4, and 7) depends on the du-
ration of data to be searched, which depends in turn on
how quickly the attack is discovered. In our test, Hype-
rion searched several hours of trace data in seconds. In
actual usage it may be necessary to search several days or
more of trace data; in this case the long-running queries

would require minutes to complete, but would still be ef-
fective as a real-time forensic tool.

8 Related Work
Like Hyperion, both PIER [14] and MIND [18] are
able to query past network monitoring data across a dis-
tributed network. Both of these systems, however, are
based on DHT structures which are unable to sustain
the high insertion rates required for indexing packet-level
trace data, and can only index lower-speed sources such
as flow-level information. The Gigascope [5] network
monitoring system is able to process full-speed network
monitoring streams, and provides a SQL-based query
language. These queries, however, may only be ap-
plied over incoming data streams; there is no mechanism
in GigaScope itself for retrospective queries, or queries
over past data. StreamBase [28] is a general-purpose
stream database, which like GigaScope is able to han-
dle streaming queries at very high rates. In addition, like
Hyperion, StreamBase includes support for persistent ta-
bles for retrospective queries, but these tables are con-
ventional hash or B-tree-indexed tables, and are subject
to the same performance limitations.

A number of systems such as the Endace DAG [9]
have been developed for wire-speed collection and stor-
age of packet monitoring data, but these systems are
designed for off-line analysis of data, and provide no
mechanisms for indexing or even querying the data.
CoMo [15] addresses high-speed monitoring and stor-
age, with provisions for both streaming and retrospective
queries. Although it has a storage component, however,
it does not include any mechanism for indexing, limiting
its usefulness for querying large monitor traces.

The log structure of StreamFS bears a debt to the orig-
inal Berkeley log-structured file system [22], as well as
the WORM file system from the V System [4]. There
has been much work in the past on supporting streaming
reads and writes for multimedia file systems (e.g. [30]);
however, the sequential-write random-read nature of our
problem results in significantly different solutions.

There is an extensive body of literature on Bloom fil-
ters and the signature file index used in this system; two
useful articles are a survey by Faloutsos [10] and the
original article by Bloom [2]. Multi-level and multi-
resolution indices have been described both in this body
of literature (e.g. [23]) as well as in other areas such as
sensor networks [13, 6].

9 Conclusions
In this paper, we argued that neither general-purpose file
systems nor common database index structures meet the
unique needs imposed by high-volume stream archival
and indexing. We proposed Hyperion, a novel stream
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archival system that consists of StreamFS, a write-
optimized stream file system, and a multi-level signa-
ture index that handles high update rates and enables dis-
tributed querying. Our prototype evaluation has shown
that (i) StreamFS can scale to write loads of over a mil-
lion packets per second, (ii) the index can support over
200K packet/s while providing good query performance
for interactive use, and (iii) our system can scale to tens
of monitors. As part of future work, we plan to enhance
the aging policies in StreamFS and implement other in-
dex structures to support richer querying.
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